Numerical simulation of non-linear elastic flows with a general collocated finite-volume method

نویسندگان

  • P. J. Oliveira
  • F. T. Pinho
  • G. A. Pinto
چکیده

This paper reports the development and application of a finite-volume based methodology for the calculation of the flow of fluids which follow differential viscoelastic constitutive models. The novelty of the method lies on the use of the non-staggered grid arrangement, in which all dependent variables are located at the center of the control volumes, thus greatly simplifying the adoption of general curvilinear coordinates. The pressure–velocity–stress decoupling was removed by the development of a new interpolation technique inspired on that of Rhie and Chow, AIAA 82 (1982) 998. The differencing schemes are second order accurate and the resulting algebraic equations for each variable are solved in a segregated way (decoupled scheme). The numerical formulation especially designed for the interpolation of the stress field was found to work well and is shown to be indispensable for accurate results. Calculations have been carried out for two problems: the entry flow problem of Eggleton et al., J. Non-Newtonian Fluid Mech. 64 (1996) 269, with orthogonal and non-orthogonal meshes; and the bounded and unbounded flows around a circular cylinder. The results of the simulations compare favourably with those in the literature and iterative convergence has been attained for Deborah and Reynolds numbers similar to, or higher than, those reported for identical flow problems using other numerical methods. The application of the method with non-orthogonal coordinates is demonstrated. The entry flow problem is studied in more detail and for this case differences between Newtonian and viscoelastic fluids are identified and discussed. Viscoelasticity is shown to be responsible for the development of very intense normal stresses, which are tensile in the wall region. As a consequence, the viscoelastic fluid is more intensely decelerated in the wall region than the Newtonian fluid, thus reducing locally the shear rates and the role of viscosity in redeveloping the flow. A layer of high stress-gradients is formed at the wall leading edge and is convected below and away from the wall; its effect is to intensify the aforementioned deviation of elastic fluid from the wall. © 1998 Elsevier Science B.V. All rights reserved. * Corresponding author. 0377-0257/98/$19.00 © 1998 Elsevier Science B.V. All rights reserved. PII S0377-0257(98)00082-2 P.J. Oli6eira et al. / J. Non-Newtonian Fluid Mech. 79 (1998) 1–43 2

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Simulation of Pitching and Heaving Airfoil with Oscillation of Flow Boundary Condition

A pressure based implicit procedure to solve the Euler and Navier-Stokes equation is developed to predict transonic viscous and inviscid flows around the pitching and heaving airfoils with a high reslution scheme. In this process, nonorthogonal and non moving mesh with collocated finite volume formulation are used. In order to simulate pitching or heaving airfoil, oscillation of flow boundary c...

متن کامل

Transonic Turbulent Flow Simulation using Pressure-Based Method and Normalized Variable Diagram

A pressure-based implicit procedure to solve the Euler and Navier-Stokes equations on a nonorthogonal mesh with collocated finite volume formulation is described. The boundedness criteria for this procedure are determined from Normalized Variable diagram (NVD) scheme.The procedure incorporates the ε−k eddy-viscosity turbulence model. The algorithm is tested for inviscid and turbulent transonic ...

متن کامل

Numerical Simulation of the Hydrodynamics of a Two-Dimensional Gas—Solid Fluidized Bed by New Finite Volume Based Finite Element Method

n this work, computational fluid dynamics of the flow behavior in a cold flow of fluidized bed is studied. An improved finite volume based finite element method has been introduced to solve the two-phase gas/solid flow hydrodynamic equations. This method uses a collocated grid, where all variables are located at the nodal points. The fluid dynamic model for gas/solid two-phase flow is based on ...

متن کامل

Coupling Nonlinear Element Free Galerkin and Linear Galerkin Finite Volume Solver for 2D Modeling of Local Plasticity in Structural Material

This paper introduces a computational strategy to collaboratively develop the Galerkin Finite Volume Method (GFVM) as one of the most straightforward and efficient explicit numerical methods to solve structural problems encountering material nonlinearity in a small limited area, while the remainder of the domain represents a linear elastic behavior. In this regard, the Element Free Galerkin met...

متن کامل

Modified Fixed Grid Finite Element Method in the Analysis of 2D Linear Elastic Problems

In this paper, a modification on the fixed grid finite element method is presented and used in the solution of 2D linear elastic problems. This method uses non-boundary-fitted meshes for the numerical solution of partial differential equations. Special techniques are required to apply boundary conditions on the intersection of domain boundaries and non-boundary-fitted elements. Hence, a new met...

متن کامل

A new numerical framework to simulate viscoelastic free-surface flows with the finite- volume method

A new method for the simulation of 2D viscoelastic flow is presented. Numerical stability is obtained by the logarithmic-conformation change of variable, and a fully-implicit pure-streamfunction flow formulation, without use of any artificial diffusion. As opposed to other simulation results, our calculations predict a hydrodynamic instability in the 4:1 contraction geometry at a Weissenberg nu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998